Let me start by saying this was a gauntlet. I started by collecting election data for the Presidential Election of 2004 and the Senate Elections of 2004 and 2006. I then parsed the results and created a massive table while incorporating our projections into a 2008 metaset. From here I just did the simple division necessary to compute the Coattail Coefficient.
The table below illustrates the outcome of our study. The "XXX Pres Coefficient" column represents the calculation previously prescribed in our previous article on coattails; if the result of the simple division is greater than 1, the Senate candidate is over performing relative to that party's Presidential nominee. A number below 1 implies the opposite. For Senate races that occurred in 2006 I used the 2004 Presidential result from that state as the comparator. The 2008 data is drawn from our projections, and the 2004 data is provided by the Federal Election Committee.
The furthest column to the right, Winner's Coattail, corresponds to the Coattail Coefficient of the party that won the given Senate Election. The "<" and ">" illustrate whether the eventual winner of the given Senate seat had a larger coefficient than the competition. The "<" is used when the victor did in fact have a larger coefficient, while the ">" implies the opposite. I have bolded all races in which the actual or projected margin ranged between zero and six percent. I encourage you to take a detailed look at the table below, but when you're done don't forget to continue reading.
State Year Dem Pres Rep Pres Winner's
Coefficient Coefficient Coattail
Nebraska 2006 1.95 0.55 < 1.95 (D)
North Dakota 2004 1.92 0.50 < 1.92 (D)
Maine 2006 0.38 1.66 < 1.66 (R)
North Carolina 2006 1.58 0.53 < 1.58 (D)
Indiana 2004 1.57 0.62 < 1.57 (D)
Rhode Island 2008 1.55 0.80 < 1.55 (D)
Maine 2008 0.77 1.53 < 1.53 (R)
West Virginia 2008 1.51 0.65 < 1.51 (D)
Arkansas 2008 1.49 0.93 < 1.49 (D)
West Virginia 2006 1.49 0.60 < 1.49 (D)
South Dakota 2008 1.49 0.72 < 1.49 (D)
Indiana 2006 0.00 1.46 < 1.46 (R)
Idaho 2004 0.00 1.45 < 1.45 (R)
New Mexico 2006 1.44 0.59 < 1.44 (D)
Montana 2006 1.41 0.74 < 1.41 (D)
Iowa 2004 0.57 1.41 < 1.41 (R)
Arizona 2004 0.46 1.40 < 1.40 (R)
Hawaii 2004 1.40 0.46 < 1.40 (D)
Wisconsin 2006 1.35 0.60 < 1.35 (D)
New Hampshire 2004 0.67 1.35 < 1.35 (R)
Mississippi-A 2008 0.92 1.29 < 1.29 (R)
Louisiana 2008 1.28 0.77 < 1.28 (D)
West Virginia 2004 1.28 0.79 < 1.28 (D)
Florida 2006 1.28 0.73 < 1.28 (D)
Illinois 2004 1.28 0.61 < 1.28 (D)
Nevada 2004 1.28 0.70 < 1.28 (D)
Montana 2006 1.27 0.82 < 1.27 (D)
Wyoming-A 2008 0.75 1.27 < 1.27 (R)
Delaware 2006 1.26 0.60 < 1.26 (D)
Ohio 2004 0.74 1.26 < 1.26 (R)
Arkansas 2004 1.25 0.81 < 1.25 (D)
Oregon 2004 1.23 0.67 < 1.23 (D)
Connecticut 2004 1.22 0.73 < 1.22 (D)
Wyoming-B 2008 0.82 1.22 < 1.22 (R)
Virginia 2004 1.21 0.80 < 1.21 (D)
Vermont 2004 1.20 0.63 < 1.20 (D)
Virginia 2008 1.19 0.72 < 1.19 (D)
Maryland 2004 1.16 0.79 < 1.16 (D)
Ohio 2006 1.15 0.86 < 1.15 (D)
Pennsylvania 2006 1.15 0.85 < 1.15 (D)
Vermont 2006 1.15 0.83 < 1.15 (D)
Tennessee 2008 0.84 1.14 < 1.14 (R)
Delaware 2008 1.14 0.74 < 1.14 (D)
Minnesota 2006 1.14 0.80 < 1.14 (D)
Hawaii 2006 1.14 0.81 < 1.14 (D)
Alabama 2008 0.90 1.12 < 1.12 (R)
New York 2004 1.12 0.60 < 1.12 (D)
Massachusetts 2006 1.12 0.83 < 1.12 (D)
New Mexico 2008 1.12 0.86 < 1.12 (D)
Kansas 2004 0.75 1.12 < 1.12 (R)
Alaska 2008 1.11 0.86 < 1.11 (D)
Michigan 2006 1.11 0.86 < 1.11 (D)
Iowa 2006 1.11 0.92 < 1.11 (D)
Kansas 2008 0.83 1.10 < 1.10 (R)
Nevada 2006 0.86 1.10 < 1.10 (R)
California 2006 1.09 0.79 < 1.09 (D)
Colorado 2004 1.09 0.90 < 1.09 (D)
Virginia 2006 1.09 0.92 < 1.09 (D)
Pennsylvania 2004 0.82 1.09 < 1.09 (R)
Alabama 2004 0.88 1.08 < 1.08 (R)
Washington 2006 1.08 0.87 < 1.08 (D)
Michigan 2008 1.08 0.84 < 1.08 (D)
Missouri 2006 1.08 0.89 < 1.08 (D)
Mississippi-B 2006 0.88 1.07 < 1.07 (R)
California 2004 1.06 0.85 < 1.06 (D)
New Hampshire 2006 1.06 0.91 < 1.06 (D)
Missouri 2004 0.93 1.05 < 1.05 (R)
South Carolina 2008 0.98 1.04 < 1.04 (R)
New York 2006 1.03 0.67 < 1.03 (D)
Wyoming-A 2006 1.03 1.02 > 1.02 (R)
Massachusetts 2008 1.01 0.58 < 1.01 (D)
Texas 2006 0.94 1.01 < 1.01 (R)
Georgia 2004 0.96 1.00 < 1.00 (R)
New Hampshire 2008 1.00 0.85 < 1.00 (D)
Illinois 2008 0.99 0.98 < 0.99 (D)
Colorado 2008 0.99 0.87 < 0.99 (D)
Mississippi-B 2008 0.97 0.99 < 0.99 (R)
Texas 2008 0.96 0.98 < 0.98 (R)
Minnesota 2008 0.72 0.98 < 0.98 (R)
Arizona 2006 0.98 0.97 > 0.97 (R)
Maryland 2006 0.97 1.03 > 0.97 (D)
Nebraska 2008 0.96 0.97 < 0.97 (R)
Florida 2004 1.03 0.95 > 0.95 (R)
Kentucky 2008 1.06 0.93 > 0.93 (R)
South Carolina 2004 1.08 0.93 > 0.93 (R)
North Carolina 2004 1.08 0.92 > 0.92 (R)
Georgia 2008 0.99 0.92 > 0.92 (R)
Rhode Island 2006 0.90 1.20 > 0.90 (D)
Louisiana 2004 1.12 0.90 > 0.90 (R)
North Carolina 2008 0.90 0.88 < 0.90 (D)
Tennessee 2006 1.13 0.89 > 0.89 (R)
Utah 2006 1.20 0.87 > 0.87 (R)
New Jersey 2008 0.86 1.02 > 0.86 (D)
Kentucky 2004 1.24 0.85 > 0.85 (R)
Oregon 2008 0.84 1.08 > 0.84 (D)
Oklahoma 2008 1.17 0.84 > 0.84 (R)
Idaho 2008 1.20 0.83 > 0.83 (R)
Oklahoma 2004 1.20 0.80 > 0.80 (R)
Alaska 2004 1.28 0.80 > 0.80 (R)
Connecticut 2006 0.73/0.93 0.22 < 0.73/0.93 (D)
What does this massive compilation of data mean? The result is surprisingly straightforward and allows for a nice generalization. Focusing our attention towards the bottom of the table reveals that the winner, in a competitive race, rarely garnered a coefficient greater than 1. This result appears to be counterintuitive but just wait, it gets stranger; notice the large quantity of ">" signs towards the bottom of the table. Under this interpretation the candidate who can win more votes from the opposite party is the likely victory; its actually better to abandon your own party and run across the aisle. Using this result, a succinct postulate can be formed: if candidate A has a coefficient less than 1 and their opponent, candidate B, has a coefficient greater than 1, candidate A has the historic advantage.
Using the above postulate, what can then be said about the 2008 Senate races?
We'll start from the bottom and work our way up through the bolded races happening this year. Our first stop is Oregon. Oregon seems to be safely in Democratic hands, Smith (R) has a coefficient greater than 1 at 1.08, while his challenger Markley (D), is repping a 0.84. Merkley has also opened up a healthy four to five point lead in recent polling.
Moving on up; North Carolina is our next stop. Hagan (D) is currently leading our projection, but the coefficients in this race favor the incumbent Dole (R).
Georgia's like North Carolina, but the opposite. Martin (D) is trailing in the polls, but he's got the better coefficients.
Kentucky exemplifies our rule and seems to be safely in McConnell's (R) court.
Minnesota features a competitive three way race so I'm not exactly sure how our generalization applies, but here it goes. Franken's (D) coefficient is significantly below 1, in fact its the lowest coefficient in the field, but Coleman (R) is still maintaining a slight lead; in large part due to a very suspect St. Cloud State poll that showed 21% of the Minnesota electorate as undecided. Barkley could still make a run too, its impossible to tell.
Our little conclusion may give hope yet to Musgrove (D), the Democratic challenger in Mississippi-B. Musgrove's coefficient is below both 1 and his competitors coefficient, but recent polling has shown Wicker (R) with a significantly large lead.
The last on the list is Alaska, but after today's news of the Stevens' conviction, Begich (D) seems destined to the Senate.
Using just the conclusion of this report as a predictor, the Democratic Party stands to pickup Oregon, Georgia, Minnesota, Mississippi-B and Alaska. By my count that would put the Democratic caucus at the magical 60 Senator, filibuster proof majority.
0
Response(s) to
Senate Coattail Coefficients Continued
Leave a Reply:
Name: (Defaults to Anonymous)
Type the characters you see in the image below: